PFAS Challenges in Agricultural Production: Livestock

Sara J. Lupton

USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center

PFAS and Livestock

- Production Considerations and Challenges
- Livestock Research ADME
- Livestock Research Mitigation and Remediation
- Livestock Research PFAS Analysis

Multiple Types of Livestock

Bovine

- Beef (heifers, steers, cows)
- Veal calves
- Dairy cows
- Bulls
- Milk products

Porcine

- Market swine
- Roaster swine
- Boars, sows, stags
- Feral swine

- Young chickens (broilers/fryers)
- Young turkeys (fryers/roasters)
- Ducks
- Egg products

Aquaculture

- Siluriformes (catfish, bullheads)
- Salmon
- Shellfish
- Others

Other livestock

- Goats
- Sheep (adults and lambs)
- Rabbits
- Bison, deer, elk, etc

Contamination Inputs and Exposure Sources

Contamination Inputs

- Biosolids/Amendments
 - Municipal
 - Industrial (paper and textiles)
 - Manure
- Firefighting Foam

Exposure Sources

- Feed
- Water
- Soil
- Geographic
- Other sources

Production Practices

Intensive

- Close proximity housing, controlled diet, controlled environment
- Outdoor or indoor housing (feedlots, factory and battery farms)
- Feed and water sources, proximity to contamination

Semi-Intensive

- Close to wider proximity, semi-controlled diet with forage supplementation, semi-controlled environment
- Outdoor and indoor housing with some free range
- Feed sources (especially forage), water sources, possible exposure to environmental contamination with proximity

Extensive

- Long range, range lands/pastures, little to no control of diet or environment
- Outdoor
- Feed and water sources, probable exposure to environmental contamination with proximity

United States Department of Agriculture

Carcass and Waste Management

How contaminated are carcasses or manure

What is the volume of waste/carcasses

On-farm options

- Burial of carcasses not possible if contaminated
- Composting will concentrate PFAS into smaller volume but need to have safety measures in place to prevent environmental contamination
- Use of manure on croplands could cause additional issues

Offsite options

- Composting same considerations as on-farm
- Land-filling where allowed and appropriate with safety measures in place
- Incineration incomplete combustion of PFAS compounds

Currently no complete abatement measures available

Edward T. Schafer Agricultural Research Center

Livestock Research - ADME

- Absorption, distribution, metabolism, and excretion studies provide data on the pharmacokinetics of a chemical exposure in an animal
- Data from studies are utilized for exposure and risk assessments
- These assessments inform typically in form regulation

United States Department of Agriculture

Livestock Research - ADME

Challenges for livestock research

- Specie
- Housing
- Study Length
- Clean water and feed sources
- Exposure
 - Dose
 - Length of time
 - Which PFAS compounds
 - Incurred feed and water sources
- PFAS analysis cost and methods
- Waste and carcass management

Livestock Research - ADME

Data Gaps

- Some livestock species are missing ADME data needed for exposure and risk assessments
 - What is observed for one specie is not necessarily true for another
- Many PFAS compounds have not been studied in livestock species
- Bioavailability data from feed and water exposure are limited
- Waste and carcass management
 - Technologies for cleanup

Carboxylic Acids in Broiler Plasma

Edward T. Schafer Agricultural Research Center

Livestock Research – Remediation/Mitigation

Mitigating or preventing PFAS contamination of livestock

- Reduce or eliminate livestock exposure to PFAS
 - Provision of clean water and feed

States Department of Agriculture

Agricultural Research Service

- Can be cost prohibitive and might not be viable long-term
- Move animals to clean area/land or more confined feeding operations
 - Is this economically and logistically viable
- Feed additives that can bind PFAS compounds before distribution into the tissue and increase excretion of PFAS as consumed

Livestock Research – Remediation/Mitigation

Remediating or clearance of PFAS from contaminated livestock

- PFAS Depuration
 - Time that PFAS clears naturally from body
 - Specie, compound, and half-life dependent
 - Level of contamination
 - Provision of clean water and feed
- Feed additives that will bind PFAS currently in the body and increase clearance
 - Possibly interrupt the enterohepatic

nited States Department of Agriculture

PFAS	Serum T _{1/2}	CI (95 th %)
	wk	wk
PFHxS	4.3	6.6
PFHpS	4.1	7.4
L-PFOS	9.8	46.1
3Me-PFOS	7.9	23.8
6Me-PFOS	10.4	97.3

Livestock Research – Remediation/Mitigation

Feed Additive Binder Considerations and Challenges:

- Safe for animals and humans if exposed
- Palatable and can be provided in feed
- Typically needs to be indigestible
- Binding Capacity and efficacy
 - Effective for wide range of PFAS
- Efficiency
- Cost effective
- Waste management
- Currently there are only a few candidates being tested and only on specific species
 - Need for additional candidates

Livestock Research – PFAS Analysis

Current Available Methods:

- EPA Method 1633 fish tissues https://www.epa.gov/system/files/docum ents/2024-01/method-1633-final-for-webposting.pdf
- FDA C-010.03 various foods including meat and animal products <u>https://www.fda.gov/media/131510/downl</u> <u>oad?attachment</u>
- USDA FSIS CLG-PFAS 2.04 plasma and muscle of various species including meat animals and catfish <u>https://www.fsis.usda.gov/sites/default/fil</u> <u>es/media_file/documents/CLG-</u> <u>PFAS2.04.pdf</u>

Method 1633

Analysis of Per- and Polyfluoroalkyl Substances (PFAS) in Aqueous, Solid, Biosolids, and Tissue Samples by LC-MS/MS

FDA U.S. FOOD & DRUG

FDA Foods Program Compendium of Analytical Laboratory Methods: Chemical Analytical Manual (CAM)

United States Department of Agriculture

Food Safety and Inspection Service

CLG-PFAS 2.04

Screening, Determination, and Confirmation of PFAS by UHPLC-MS-MS

Livestock Research – PFAS Analysis

Considerations for Analysis Methods:

- Detection limits
- QA/QC requirements
- Compound recovery
- Number of PFAS compounds
 - Availability of isotopically labeled internal standards
- Efficiency
 - Extraction and analysis
- Robust
- Low Cost
- Wide range of covered matrices
- Validation

USDA

• Single lab vs Multi-lab

United States Department of Agriculture

Thank You!

Agricultural Research Service